
Hashchain Protocol: A Trustless
Hash-Based Framework for Scalable

Off-Chain Interactions
Fast, Fair, and Scalable – One Hash at a Time

Aashish Paliwal

March 2025

1 Introduction

Blockchain protocols for electronic payments offers secure payment transaction. How-
ever, their transaction throughput pales in comparison to centralized payment processors
like Visa. Additionally, transaction fee associated with each payment represent a signifi-
cant obstacle to the widespread adoption of blockchain based payments for everyday use,
particularly for micropayments or high-frequency interactions due to additional mental
overhead.
A major issue is that, despite increased throughput on various chains, all on-chain

transactions remain permanently recorded on the blockchain, causing significant clut-
ter. A viable solution to mitigate this issue is by reducing the storage burden of high-
frequency transactions on-chain and instead using verifiable payment mechanisms that
cryptographically link transactions while recording only the first and last tokens on-
chain.
We present a modified PayWord [1] scheme by Rivest and Shamir. It is a credit-based

unidirectional system where users deposit funds into an escrow contract. This mechanism
enables thousands of off-chain transactions with only two on-chain interactions: the
initial deposit and final settlement. Unlike traditional payment channels, this scheme
achieves unparalleled efficiency by validating tokens through a single hash operation,
making it suitable for both micropayments and high-value transactions. The Hashchain
Protocol is designed to be fast, fair, and scalable - one hash at a time.

2 Background

This section provides the foundational concepts underlying the Hashchain Protocol, in-
cluding hash chains for secure token verification in section 2.1 and the PayWord scheme
for efficient micropayments in section 2.2.

1



2.1 Hash chain

A hash chain is a cryptographic structure in which each element of the chain is generated
by applying a hash function to the previous element. Starting from an initial random
value (often referred to as the “seed”).

seed (seed) (seed) (seed) (seed)

hash tokens

Figure 1: Illustration of a hash chain.

In Figure 1, hn(seed) represents the trust anchor, which serves as the root of the hash
chain. Each subsequent value is cryptographically linked to the trust anchor through
iterative hashing.

Hash chains ensure tamper-proof verification because modifying any element in the
chain results in a mismatch when the final hash is compared to the trust anchor. This
cryptographic property guarantees that any alteration of the chain invalidates the entire
structure, ensuring its integrity.

2.2 PayWord

PayWord, introduced by Rivest and Shamir, is a credit-based micropayment scheme
designed to minimize computational overhead for small transactions. It uses hash chains,
where each token in the chain is derived by applying a cryptographic hash function to
the subsequent token, starting with a random final value. A user establishes an account
with a broker, who issues a digitally signed PayWord certificate, authorizing the user to
create and commit hash chains to vendors. The user provides the root of the hash chain
(trust anchor) to the vendor, and payments are made by sequentially revealing tokens
from the chain. The vendor verifies each token by hashing it iteratively.

3 Generalized Framework: Design and Architecture

The proposed payment framework builds upon the PayWord scheme while extending its
functionality to support a wide range of payment types, from micropayments to high-
value transactions. At its core, the framework integrates an escrow-based smart contract
that ensures secure, trustless, and efficient handling of funds.

3.1 Core components

This section outlines the fundamental components of the Hashchain Protocol, detailing
the escrow mechanism, trust anchor, fund release process, and key participants involved.

2



• Escrow smart contract: Act as an secure intermediary which stores funds that
can only be redeemed programatically. Funds are controlled by code hence even
admin cannot steal funds reducing the trust requirement. It also provides a fallback
mechanism for user to claim funds back in case merchant is malicious and refuses
to close the channel using time lock.

• Trust anchor: Represents the tip of the hash chain. It is created and submitted
along with funds at the time of channel creation. It ensures that each token is
cryptographically linked to the next one until it reaches trust anchor.

• Proportional Fund Release Mechanism: The mechanism validates the sub-
mitted final token by iteratively hashing it to derive the trust anchor. The smart
contract ensures that the final token submitted by the merchant, when hashed n
times (n being the number of tokens used), equals the trust anchor. This guarantees
that for each token spent, there is one hash computation on-chain during redemp-
tion. Since each token is cryptographically linked in the hash chain, intermediate
tokens are not required on-chain. This reduces the storage and computational load
while still ensuring trustless verification and fair fund release.

It determines the payment amount by calculating the ratio of spent tokens (used
hashes) to the total chain length.

Payment Amount =
Escrowed Funds× Spent Tokens

Total Chain Length

• Participants:

– User: Deposit funds, initialize hash chain, consume goods or service and share
hash tokens off-chain.

– Merchant: Delivers goods or services and submits the final token to claim
proportional funds.

– Escrow smart contract: Automates fund release based on token validation
and ratio calculations.

3.2 Workflow

This section describes the step-by-step workflow of the Hashchain Protocol, detailing
how payment channels are established, tokens are exchanged off-chain, and transactions
are finalized on-chain with cryptographic validation.

1. Channel setup: The user initiates a payment channel by depositing funds into
a smart contract and specifying a trust anchor, the total number of tokens in the
hash chain, and a timeout period. The smart contract locks the funds, providing
assurance to both parties of secure and conditional payment.

3



2. Token exchange: Tokens from the hash chain are exchanged off-chain during
interactions between the user and merchant. Each token is cryptographically de-
rived from the subsequent token in the chain, ensuring that all tokens are linked
back to the trust anchor.

If multiple tokens are sent in one batch, the user includes the number of tokens k
alongside the current token. This allows the merchant to perform iterative hashing
k times, ensuring that:

h(h(. . . h(current token))) = previous token

Such off-chain verification avoids the need to submit intermediate tokens to the
blockchain while maintaining efficiency and cryptographic security.

3. Transaction finalization: The merchant submits the final token from the chain,
representing the portion of services provided or goods delivered. The smart con-
tract verifies the token by iteratively hashing it and comparing the result to the
trust anchor. Based on the verified number of tokens consumed, the contract cal-
culates and disperses the corresponding funds to the merchant, while refunding
any remaining balance to the user.

3.3 Example scenario

The following section provides a step-by-step example illustrating how the Hashchain
Protocol facilitates payments, token consumption, and finalization within an escrow-
based smart contract.

• Channel creation (cf. Figure 2): A user deposits 1 cBTC into the escrow smart
contract and establishes a trust anchor for a hash chain of 1000 tokens.

• Token consumption (cf. Figure 2): The user interacts with the merchant, consum-
ing three tokens in the hash chain. The remaining seven tokens are unused.

• Finalization (cf. Figure 3): The merchant submits the last token of the consumed
portion (third token in the chain) to the escrow contract. The contract verifies the
submission by hashing the token three times to match the trust anchor:

H450
hash−−−→ H449 . . .

hash−−−→ H1
hash−−−→ Hanchor

Smart contract calculates the payment for merchant: 450
1000 × 1 = 0.45.

Smart contract calculates the refund to user: 1− 0.45 = 0.55.
The funds are dispersed accordingly, and the channel is closed.

3.4 Security mechanisms

This section outlines the security mechanisms implemented in the Hashchain Protocol
to ensure transaction integrity, protect against inactivity or fraud, and guarantee fair
proportional payments.

4



User Merchant

Smart contractInitial amount,
trust anchor

Send hash tokens off-chain

31

2

Send final token
token 450

1 cBTC = 1000 tokens
1 token = 0.001 cBTC

Figure 2: Illustration of the hashchain protocol payment workflow, where the user com-
mits an initial amount and trust anchor to a smart contract, sending hash
tokens off-chain incrementally. Finally, merchant submits final token 450 for
verification, representing 0.450 cBTC.

User Merchant

Smart contract

Verify token by 
hashing 450 times

Amount: 0.450 cBTCAmount: 0.550 cBTC

Figure 3: Depiction of the hashchain protocol redemption process. The smart contract
verifies the submitted token by hashing 450 times and calculates proportional
payouts: 0.450 cBTC to the merchant and 0.550 cBTC refunded to the user.

• Hash chain verification: The smart contract ensures that the submitted final
token is authentic by iteratively hashing it and verifying that it matches the trust
anchor.

5



• Timeout protection: If the merchant does not finalize the transaction by the
specified timeout period, the user can reclaim the unspent funds. This acts as a
safeguard against inactive or fraudulent merchants.

• Proportional payment assurance: Payments are made proportional to the
verified tokens, ensuring fairness.

4 Key Features of the Framework

This section highlights the key advantages of the Hashchain Protocol, including its scal-
ability, cost-efficiency, and trustless operation, making it suitable for a wide range of
payment scenarios.

• Dynamic payments: Payments are made proportionally to the usage of the hash
chain, ensuring fairness for payer and merchant.

• Gasless intermediate transactions: All payments made between opening and
closing the channel occur off-chain, without any gas fees, while remaining crypto-
graphically linked and verifiable.

• Scalability: Only the first and last tokens are submitted on-chain for verification.
All intermediate transactions occur off-chain in verifiable manner, reducing gas
costs and latency.

• Trustless operation: Fund release is governed entirely by smart contract logic,
removing reliance on intermediaries. Properties of cryptographic hash function
guarantees transparency and security.

• Adaptability: Supports a variety of use cases, including incremental payments,
subscription models, and large-scale financial transactions.

5 Conclusion

The Hashchain Protocol provides a scalable and efficient solution for high-throughput
blockchain payments by reducing on-chain transaction overhead. Through the use of
a modified PayWord scheme, payments are conducted off-chain without gas fees, while
cryptographic hash chains ensure verifiability. The escrow-based smart contract enforces
trustless fund release proportional to transaction activity, eliminating reliance on inter-
mediaries.

This framework has the potential to significantly reduce on-chain clutter while improv-
ing transaction speed by minimizing costs, improving efficiency, and maintaining secu-
rity. Future work includes exploring optimizations, integrating with existing blockchain
networks, and evaluating real-world performance. By enabling seamless off-chain trans-
actions with verifiable settlement, this approach offers a practical foundation for scalable
digital payments.

6



References

[1] Ronald L. Rivest and Adi Shamir. “PayWord and MicroMint: Two Simple Micro-
payment Schemes”. In: Security Protocols. 1997, pp. 69–87.

7


